diff options
Diffstat (limited to 'vendor/github.com/google/cel-go/cel/program.go')
| -rw-r--r-- | vendor/github.com/google/cel-go/cel/program.go | 245 |
1 files changed, 86 insertions, 159 deletions
diff --git a/vendor/github.com/google/cel-go/cel/program.go b/vendor/github.com/google/cel-go/cel/program.go index 144d1f2..ec3869b 100644 --- a/vendor/github.com/google/cel-go/cel/program.go +++ b/vendor/github.com/google/cel-go/cel/program.go @@ -20,6 +20,7 @@ import ( "sync" "github.com/google/cel-go/common/ast" + "github.com/google/cel-go/common/functions" "github.com/google/cel-go/common/types" "github.com/google/cel-go/common/types/ref" "github.com/google/cel-go/interpreter" @@ -75,7 +76,7 @@ func NewActivation(bindings any) (Activation, error) { return interpreter.NewActivation(bindings) } -// PartialActivation extends the Activation interface with a set of UnknownAttributePatterns. +// PartialActivation extends the Activation interface with a set of unknown AttributePatterns. type PartialActivation = interpreter.PartialActivation // NoVars returns an empty Activation. @@ -91,7 +92,7 @@ func NoVars() Activation { // // The `vars` value may either be an Activation or any valid input to the NewActivation call. func PartialVars(vars any, - unknowns ...*interpreter.AttributePattern) (PartialActivation, error) { + unknowns ...*AttributePatternType) (PartialActivation, error) { return interpreter.NewPartialActivation(vars, unknowns...) } @@ -108,12 +109,15 @@ func PartialVars(vars any, // fully qualified variable name may be `ns.app.a`, `ns.a`, or `a` per the CEL namespace resolution // rules. Pick the fully qualified variable name that makes sense within the container as the // AttributePattern `varName` argument. +func AttributePattern(varName string) *AttributePatternType { + return interpreter.NewAttributePattern(varName) +} + +// AttributePatternType represents a top-level variable with an optional set of qualifier patterns. // // See the interpreter.AttributePattern and interpreter.AttributeQualifierPattern for more info // about how to create and manipulate AttributePattern values. -func AttributePattern(varName string) *interpreter.AttributePattern { - return interpreter.NewAttributePattern(varName) -} +type AttributePatternType = interpreter.AttributePattern // EvalDetails holds additional information observed during the Eval() call. type EvalDetails struct { @@ -151,30 +155,17 @@ type prog struct { // Intermediate state used to configure the InterpretableDecorator set provided // to the initInterpretable call. - decorators []interpreter.InterpretableDecorator + plannerOptions []interpreter.PlannerOption regexOptimizations []*interpreter.RegexOptimization // Interpretable configured from an Ast and aggregate decorator set based on program options. interpretable interpreter.Interpretable + observable *interpreter.ObservableInterpretable callCostEstimator interpreter.ActualCostEstimator costOptions []interpreter.CostTrackerOption costLimit *uint64 } -func (p *prog) clone() *prog { - costOptsCopy := make([]interpreter.CostTrackerOption, len(p.costOptions)) - copy(costOptsCopy, p.costOptions) - - return &prog{ - Env: p.Env, - evalOpts: p.evalOpts, - defaultVars: p.defaultVars, - dispatcher: p.dispatcher, - interpreter: p.interpreter, - interruptCheckFrequency: p.interruptCheckFrequency, - } -} - // newProgram creates a program instance with an environment, an ast, and an optional list of // ProgramOption values. // @@ -186,10 +177,10 @@ func newProgram(e *Env, a *ast.AST, opts []ProgramOption) (Program, error) { // Ensure the default attribute factory is set after the adapter and provider are // configured. p := &prog{ - Env: e, - decorators: []interpreter.InterpretableDecorator{}, - dispatcher: disp, - costOptions: []interpreter.CostTrackerOption{}, + Env: e, + plannerOptions: []interpreter.PlannerOption{}, + dispatcher: disp, + costOptions: []interpreter.CostTrackerOption{}, } // Configure the program via the ProgramOption values. @@ -201,16 +192,25 @@ func newProgram(e *Env, a *ast.AST, opts []ProgramOption) (Program, error) { } } - // Add the function bindings created via Function() options. - for _, fn := range e.functions { - bindings, err := fn.Bindings() - if err != nil { - return nil, err - } - err = disp.Add(bindings...) - if err != nil { - return nil, err + e.funcBindOnce.Do(func() { + var bindings []*functions.Overload + e.functionBindings = []*functions.Overload{} + for _, fn := range e.functions { + bindings, err = fn.Bindings() + if err != nil { + return + } + e.functionBindings = append(e.functionBindings, bindings...) } + }) + if err != nil { + return nil, err + } + + // Add the function bindings created via Function() options. + err = disp.Add(e.functionBindings...) + if err != nil { + return nil, err } // Set the attribute factory after the options have been set. @@ -227,74 +227,71 @@ func newProgram(e *Env, a *ast.AST, opts []ProgramOption) (Program, error) { p.interpreter = interp // Translate the EvalOption flags into InterpretableDecorator instances. - decorators := make([]interpreter.InterpretableDecorator, len(p.decorators)) - copy(decorators, p.decorators) + plannerOptions := make([]interpreter.PlannerOption, len(p.plannerOptions)) + copy(plannerOptions, p.plannerOptions) // Enable interrupt checking if there's a non-zero check frequency if p.interruptCheckFrequency > 0 { - decorators = append(decorators, interpreter.InterruptableEval()) + plannerOptions = append(plannerOptions, interpreter.InterruptableEval()) } // Enable constant folding first. if p.evalOpts&OptOptimize == OptOptimize { - decorators = append(decorators, interpreter.Optimize()) + plannerOptions = append(plannerOptions, interpreter.Optimize()) p.regexOptimizations = append(p.regexOptimizations, interpreter.MatchesRegexOptimization) } // Enable regex compilation of constants immediately after folding constants. if len(p.regexOptimizations) > 0 { - decorators = append(decorators, interpreter.CompileRegexConstants(p.regexOptimizations...)) + plannerOptions = append(plannerOptions, interpreter.CompileRegexConstants(p.regexOptimizations...)) } // Enable exhaustive eval, state tracking and cost tracking last since they require a factory. if p.evalOpts&(OptExhaustiveEval|OptTrackState|OptTrackCost) != 0 { - factory := func(state interpreter.EvalState, costTracker *interpreter.CostTracker) (Program, error) { - costTracker.Estimator = p.callCostEstimator - costTracker.Limit = p.costLimit - for _, costOpt := range p.costOptions { - err := costOpt(costTracker) - if err != nil { - return nil, err - } - } - // Limit capacity to guarantee a reallocation when calling 'append(decs, ...)' below. This - // prevents the underlying memory from being shared between factory function calls causing - // undesired mutations. - decs := decorators[:len(decorators):len(decorators)] - var observers []interpreter.EvalObserver - - if p.evalOpts&(OptExhaustiveEval|OptTrackState) != 0 { - // EvalStateObserver is required for OptExhaustiveEval. - observers = append(observers, interpreter.EvalStateObserver(state)) - } - if p.evalOpts&OptTrackCost == OptTrackCost { - observers = append(observers, interpreter.CostObserver(costTracker)) - } - - // Enable exhaustive eval over a basic observer since it offers a superset of features. - if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval { - decs = append(decs, interpreter.ExhaustiveEval(), interpreter.Observe(observers...)) - } else if len(observers) > 0 { - decs = append(decs, interpreter.Observe(observers...)) - } - - return p.clone().initInterpretable(a, decs) + costOptCount := len(p.costOptions) + if p.costLimit != nil { + costOptCount++ + } + costOpts := make([]interpreter.CostTrackerOption, 0, costOptCount) + costOpts = append(costOpts, p.costOptions...) + if p.costLimit != nil { + costOpts = append(costOpts, interpreter.CostTrackerLimit(*p.costLimit)) + } + trackerFactory := func() (*interpreter.CostTracker, error) { + return interpreter.NewCostTracker(p.callCostEstimator, costOpts...) + } + var observers []interpreter.PlannerOption + if p.evalOpts&(OptExhaustiveEval|OptTrackState) != 0 { + // EvalStateObserver is required for OptExhaustiveEval. + observers = append(observers, interpreter.EvalStateObserver()) + } + if p.evalOpts&OptTrackCost == OptTrackCost { + observers = append(observers, interpreter.CostObserver(interpreter.CostTrackerFactory(trackerFactory))) + } + // Enable exhaustive eval over a basic observer since it offers a superset of features. + if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval { + plannerOptions = append(plannerOptions, + append([]interpreter.PlannerOption{interpreter.ExhaustiveEval()}, observers...)...) + } else if len(observers) > 0 { + plannerOptions = append(plannerOptions, observers...) } - return newProgGen(factory) } - return p.initInterpretable(a, decorators) + return p.initInterpretable(a, plannerOptions) } -func (p *prog) initInterpretable(a *ast.AST, decs []interpreter.InterpretableDecorator) (*prog, error) { +func (p *prog) initInterpretable(a *ast.AST, plannerOptions []interpreter.PlannerOption) (*prog, error) { // When the AST has been exprAST it contains metadata that can be used to speed up program execution. - interpretable, err := p.interpreter.NewInterpretable(a, decs...) + interpretable, err := p.interpreter.NewInterpretable(a, plannerOptions...) if err != nil { return nil, err } p.interpretable = interpretable + if oi, ok := interpretable.(*interpreter.ObservableInterpretable); ok { + p.observable = oi + } return p, nil } // Eval implements the Program interface method. -func (p *prog) Eval(input any) (v ref.Val, det *EvalDetails, err error) { +func (p *prog) Eval(input any) (out ref.Val, det *EvalDetails, err error) { // Configure error recovery for unexpected panics during evaluation. Note, the use of named // return values makes it possible to modify the error response during the recovery // function. @@ -322,12 +319,24 @@ func (p *prog) Eval(input any) (v ref.Val, det *EvalDetails, err error) { if p.defaultVars != nil { vars = interpreter.NewHierarchicalActivation(p.defaultVars, vars) } - v = p.interpretable.Eval(vars) + if p.observable != nil { + det = &EvalDetails{} + out = p.observable.ObserveEval(vars, func(observed any) { + switch o := observed.(type) { + case interpreter.EvalState: + det.state = o + case *interpreter.CostTracker: + det.costTracker = o + } + }) + } else { + out = p.interpretable.Eval(vars) + } // The output of an internal Eval may have a value (`v`) that is a types.Err. This step // translates the CEL value to a Go error response. This interface does not quite match the // RPC signature which allows for multiple errors to be returned, but should be sufficient. - if types.IsError(v) { - err = v.(*types.Err) + if types.IsError(out) { + err = out.(*types.Err) } return } @@ -355,88 +364,6 @@ func (p *prog) ContextEval(ctx context.Context, input any) (ref.Val, *EvalDetail return p.Eval(vars) } -// progFactory is a helper alias for marking a program creation factory function. -type progFactory func(interpreter.EvalState, *interpreter.CostTracker) (Program, error) - -// progGen holds a reference to a progFactory instance and implements the Program interface. -type progGen struct { - factory progFactory -} - -// newProgGen tests the factory object by calling it once and returns a factory-based Program if -// the test is successful. -func newProgGen(factory progFactory) (Program, error) { - // Test the factory to make sure that configuration errors are spotted at config - tracker, err := interpreter.NewCostTracker(nil) - if err != nil { - return nil, err - } - _, err = factory(interpreter.NewEvalState(), tracker) - if err != nil { - return nil, err - } - return &progGen{factory: factory}, nil -} - -// Eval implements the Program interface method. -func (gen *progGen) Eval(input any) (ref.Val, *EvalDetails, error) { - // The factory based Eval() differs from the standard evaluation model in that it generates a - // new EvalState instance for each call to ensure that unique evaluations yield unique stateful - // results. - state := interpreter.NewEvalState() - costTracker, err := interpreter.NewCostTracker(nil) - if err != nil { - return nil, nil, err - } - det := &EvalDetails{state: state, costTracker: costTracker} - - // Generate a new instance of the interpretable using the factory configured during the call to - // newProgram(). It is incredibly unlikely that the factory call will generate an error given - // the factory test performed within the Program() call. - p, err := gen.factory(state, costTracker) - if err != nil { - return nil, det, err - } - - // Evaluate the input, returning the result and the 'state' within EvalDetails. - v, _, err := p.Eval(input) - if err != nil { - return v, det, err - } - return v, det, nil -} - -// ContextEval implements the Program interface method. -func (gen *progGen) ContextEval(ctx context.Context, input any) (ref.Val, *EvalDetails, error) { - if ctx == nil { - return nil, nil, fmt.Errorf("context can not be nil") - } - // The factory based Eval() differs from the standard evaluation model in that it generates a - // new EvalState instance for each call to ensure that unique evaluations yield unique stateful - // results. - state := interpreter.NewEvalState() - costTracker, err := interpreter.NewCostTracker(nil) - if err != nil { - return nil, nil, err - } - det := &EvalDetails{state: state, costTracker: costTracker} - - // Generate a new instance of the interpretable using the factory configured during the call to - // newProgram(). It is incredibly unlikely that the factory call will generate an error given - // the factory test performed within the Program() call. - p, err := gen.factory(state, costTracker) - if err != nil { - return nil, det, err - } - - // Evaluate the input, returning the result and the 'state' within EvalDetails. - v, _, err := p.ContextEval(ctx, input) - if err != nil { - return v, det, err - } - return v, det, nil -} - type ctxEvalActivation struct { parent Activation interrupt <-chan struct{} |
