summaryrefslogtreecommitdiff
path: root/vendor/github.com/google/cel-go/ext/README.md
blob: 41ae6a3143f7e8fda85b33d2e916e37b97f2acba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# Extensions

CEL extensions are a related set of constants, functions, macros, or other
features which may not be covered by the core CEL spec.

## Bindings

Returns a cel.EnvOption to configure support for local variable bindings
in expressions.

### Cel.Bind

Binds a simple identifier to an initialization expression which may be used
in a subsequent result expression. Bindings may also be nested within each
other.

    cel.bind(<varName>, <initExpr>, <resultExpr>)

Examples:

    cel.bind(a, 'hello',
    cel.bind(b, 'world', a + b + b + a)) // "helloworldworldhello"

    // Avoid a list allocation within the exists comprehension.
    cel.bind(valid_values, [a, b, c],
    [d, e, f].exists(elem, elem in valid_values))

Local bindings are not guaranteed to be evaluated before use.

## Encoders

Encoding utilities for marshalling data into standardized representations.

### Base64.Decode

Decodes base64-encoded string to bytes.

This function will return an error if the string input is not
base64-encoded.

    base64.decode(<string>) -> <bytes>

Examples:

    base64.decode('aGVsbG8=')  // return b'hello'
    base64.decode('aGVsbG8')   // error

### Base64.Encode

Encodes bytes to a base64-encoded string.

    base64.encode(<bytes>)  -> <string>

Example:

    base64.encode(b'hello') // return 'aGVsbG8='

## Math

Math helper macros and functions.

Note, all macros use the 'math' namespace; however, at the time of macro
expansion the namespace looks just like any other identifier. If you are
currently using a variable named 'math', the macro will likely work just as
intended; however, there is some chance for collision.

### Math.Greatest

Returns the greatest valued number present in the arguments to the macro.

Greatest is a variable argument count macro which must take at least one
argument. Simple numeric and list literals are supported as valid argument
types; however, other literals will be flagged as errors during macro
expansion. If the argument expression does not resolve to a numeric or
list(numeric) type during type-checking, or during runtime then an error
will be produced. If a list argument is empty, this too will produce an
error.

    math.greatest(<arg>, ...) -> <double|int|uint>

Examples:

    math.greatest(1)      // 1
    math.greatest(1u, 2u) // 2u
    math.greatest(-42.0, -21.5, -100.0)   // -21.5
    math.greatest([-42.0, -21.5, -100.0]) // -21.5
    math.greatest(numbers) // numbers must be list(numeric)

    math.greatest()         // parse error
    math.greatest('string') // parse error
    math.greatest(a, b)     // check-time error if a or b is non-numeric
    math.greatest(dyn('string')) // runtime error

### Math.Least

Returns the least valued number present in the arguments to the macro.

Least is a variable argument count macro which must take at least one
argument. Simple numeric and list literals are supported as valid argument
types; however, other literals will be flagged as errors during macro
expansion. If the argument expression does not resolve to a numeric or
list(numeric) type during type-checking, or during runtime then an error
will be produced. If a list argument is empty, this too will produce an
error.

    math.least(<arg>, ...) -> <double|int|uint>

Examples:

    math.least(1)      // 1
    math.least(1u, 2u) // 1u
    math.least(-42.0, -21.5, -100.0)   // -100.0
    math.least([-42.0, -21.5, -100.0]) // -100.0
    math.least(numbers) // numbers must be list(numeric)

    math.least()         // parse error
    math.least('string') // parse error
    math.least(a, b)     // check-time error if a or b is non-numeric
    math.least(dyn('string')) // runtime error

### Math.BitOr

Introduced at version: 1

Performs a bitwise-OR operation over two int or uint values.

    math.bitOr(<int>, <int>) -> <int>
    math.bitOr(<uint>, <uint>) -> <uint>

Examples:

    math.bitOr(1u, 2u)    // returns 3u
    math.bitOr(-2, -4)    // returns -2

### Math.BitAnd

Introduced at version: 1

Performs a bitwise-AND operation over two int or uint values.

    math.bitAnd(<int>, <int>) -> <int>
    math.bitAnd(<uint>, <uint>) -> <uint>

Examples:

    math.bitAnd(3u, 2u)   // return 2u
    math.bitAnd(3, 5)     // returns 3
    math.bitAnd(-3, -5)   // returns -7

### Math.BitXor

Introduced at version: 1

    math.bitXor(<int>, <int>) -> <int>
    math.bitXor(<uint>, <uint>) -> <uint>

Performs a bitwise-XOR operation over two int or uint values.

Examples:

    math.bitXor(3u, 5u) // returns 6u
    math.bitXor(1, 3)   // returns 2

### Math.BitNot

Introduced at version: 1

Function which accepts a single int or uint and performs a bitwise-NOT
ones-complement of the given binary value.

    math.bitNot(<int>) -> <int>
    math.bitNot(<uint>) -> <uint>

Examples

    math.bitNot(1)  // returns -1
    math.bitNot(-1) // return 0
    math.bitNot(0u) // returns 18446744073709551615u

### Math.BitShiftLeft

Introduced at version: 1

Perform a left shift of bits on the first parameter, by the amount of bits
specified in the second parameter. The first parameter is either a uint or
an int. The second parameter must be an int.

When the second parameter is 64 or greater, 0 will be always be returned
since the number of bits shifted is greater than or equal to the total bit
length of the number being shifted. Negative valued bit shifts will result
in a runtime error.

    math.bitShiftLeft(<int>, <int>) -> <int>
    math.bitShiftLeft(<uint>, <int>) -> <uint>

Examples

    math.bitShiftLeft(1, 2)    // returns 4
    math.bitShiftLeft(-1, 2)   // returns -4
    math.bitShiftLeft(1u, 2)   // return 4u
    math.bitShiftLeft(1u, 200) // returns 0u

### Math.BitShiftRight

Introduced at version: 1

Perform a right shift of bits on the first parameter, by the amount of bits
specified in the second parameter. The first parameter is either a uint or
an int. The second parameter must be an int.

When the second parameter is 64 or greater, 0 will always be returned since
the number of bits shifted is greater than or equal to the total bit length
of the number being shifted. Negative valued bit shifts will result in a
runtime error.

The sign bit extension will not be preserved for this operation: vacant bits
on the left are filled with 0.

    math.bitShiftRight(<int>, <int>) -> <int>
    math.bitShiftRight(<uint>, <int>) -> <uint>

Examples

    math.bitShiftRight(1024, 2)    // returns 256
    math.bitShiftRight(1024u, 2)   // returns 256u
    math.bitShiftRight(1024u, 64)  // returns 0u

### Math.Ceil

Introduced at version: 1

Compute the ceiling of a double value.

    math.ceil(<double>) -> <double>

Examples:

    math.ceil(1.2)   // returns 2.0
    math.ceil(-1.2)  // returns -1.0

### Math.Floor

Introduced at version: 1

Compute the floor of a double value.

    math.floor(<double>) -> <double>

Examples:

    math.floor(1.2)   // returns 1.0
    math.floor(-1.2)  // returns -2.0

### Math.Round

Introduced at version: 1

Rounds the double value to the nearest whole number with ties rounding away
from zero, e.g. 1.5 -> 2.0, -1.5 -> -2.0.

    math.round(<double>) -> <double>

Examples:

    math.round(1.2)  // returns 1.0
    math.round(1.5)  // returns 2.0
    math.round(-1.5) // returns -2.0

### Math.Trunc

Introduced at version: 1

Truncates the fractional portion of the double value.

    math.trunc(<double>) -> <double>

Examples:

    math.trunc(-1.3)  // returns -1.0
    math.trunc(1.3)   // returns 1.0

### Math.Abs

Introduced at version: 1

Returns the absolute value of the numeric type provided as input. If the
value is NaN, the output is NaN. If the input is int64 min, the function
will result in an overflow error.

    math.abs(<double>) -> <double>
    math.abs(<int>) -> <int>
    math.abs(<uint>) -> <uint>

Examples:

    math.abs(-1)  // returns 1
    math.abs(1)   // returns 1
    math.abs(-9223372036854775808) // overlflow error

### Math.Sign

Introduced at version: 1

Returns the sign of the numeric type, either -1, 0, 1 as an int, double, or
uint depending on the overload. For floating point values, if NaN is
provided as input, the output is also NaN. The implementation does not
differentiate between positive and negative zero.

    math.sign(<double>) -> <double>
    math.sign(<int>) -> <int>
    math.sign(<uint>) -> <uint>

Examples:

    math.sign(-42) // returns -1
    math.sign(0)   // returns 0
    math.sign(42)  // returns 1

### Math.IsInf

Introduced at version: 1

Returns true if the input double value is -Inf or +Inf.

    math.isInf(<double>) -> <bool>

Examples:

    math.isInf(1.0/0.0)  // returns true
    math.isInf(1.2)      // returns false

### Math.IsNaN

Introduced at version: 1

Returns true if the input double value is NaN, false otherwise.

    math.isNaN(<double>) -> <bool>

Examples:

    math.isNaN(0.0/0.0)  // returns true
    math.isNaN(1.2)      // returns false

### Math.IsFinite

Introduced at version: 1

Returns true if the value is a finite number. Equivalent in behavior to:
!math.isNaN(double) && !math.isInf(double)

    math.isFinite(<double>) -> <bool>

Examples:

    math.isFinite(0.0/0.0)  // returns false
    math.isFinite(1.2)      // returns true

### Math.Sqrt

Introduced at version: 2

Returns the square root of the given input as double
Throws error for negative or non-numeric inputs

    math.sqrt(<double>) -> <double>
    math.sqrt(<int>) -> <double>
    math.sqrt(<uint>) -> <double>

Examples:

    math.sqrt(81) // returns 9.0
    math.sqrt(985.25)   // returns 31.388692231439016
    math.sqrt(-15)  // returns NaN

## Protos

Protos configure extended macros and functions for proto manipulation.

Note, all macros use the 'proto' namespace; however, at the time of macro
expansion the namespace looks just like any other identifier. If you are
currently using a variable named 'proto', the macro will likely work just as
you intend; however, there is some chance for collision.

### Protos.GetExt

Macro which generates a select expression that retrieves an extension field
from the input proto2 syntax message. If the field is not set, the default
value forthe extension field is returned according to safe-traversal semantics.

    proto.getExt(<msg>, <fully.qualified.extension.name>) -> <field-type>

Example:

    proto.getExt(msg, google.expr.proto2.test.int32_ext) // returns int value

### Protos.HasExt

Macro which generates a test-only select expression that determines whether
an extension field is set on a proto2 syntax message.

    proto.hasExt(<msg>, <fully.qualified.extension.name>) -> <bool>

Example:

    proto.hasExt(msg, google.expr.proto2.test.int32_ext) // returns true || false

## Lists

Extended functions for list manipulation. As a general note, all indices are
zero-based.

### Distinct

**Introduced in version 2 (cost support in version 3)**

Returns the distinct elements of a list.

	<list(T)>.distinct() -> <list(T)>

Examples:

    [1, 2, 2, 3, 3, 3].distinct() // return [1, 2, 3]
    ["b", "b", "c", "a", "c"].distinct() // return ["b", "c", "a"]
    [1, "b", 2, "b"].distinct() // return [1, "b", 2]

### Flatten

**Introduced in version 1 (cost support in version 3)**

Flattens a list recursively.
If an optional depth is provided, the list is flattened to a the specificied level.
A negative depth value will result in an error.

	<list>.flatten(<list>) -> <list>
	<list>.flatten(<list>, <int>) -> <list>

Examples:

    [1,[2,3],[4]].flatten() // return [1, 2, 3, 4]
    [1,[2,[3,4]]].flatten() // return [1, 2, [3, 4]]
    [1,2,[],[],[3,4]].flatten() // return [1, 2, 3, 4]
    [1,[2,[3,[4]]]].flatten(2) // return [1, 2, 3, [4]]
    [1,[2,[3,[4]]]].flatten(-1) // error

### Range

**Introduced in version 2 (cost support in version 3)**

Returns a list of integers from 0 to n-1.

	lists.range(<int>) -> <list(int)>

Examples:

	lists.range(5) -> [0, 1, 2, 3, 4]


### Reverse

**Introduced in version 2 (cost support in version 3)**

Returns the elements of a list in reverse order.

	<list(T)>.reverse() -> <list(T)>

Examples:

	[5, 3, 1, 2].reverse() // return [2, 1, 3, 5]


### Slice

**Introduced in version 0 (cost support in version 3)**

Returns a new sub-list using the indexes provided.

    <list>.slice(<int>, <int>) -> <list>

Examples:

    [1,2,3,4].slice(1, 3) // return [2, 3]
    [1,2,3,4].slice(2, 4) // return [3, 4]

### Sort

**Introduced in version 2 (cost support in version 3)**

Sorts a list with comparable elements. If the element type is not comparable
or the element types are not the same, the function will produce an error.

    <list(T)>.sort() -> <list(T)>
    T in {int, uint, double, bool, duration, timestamp, string, bytes}

Examples:

    [3, 2, 1].sort() // return [1, 2, 3]
    ["b", "c", "a"].sort() // return ["a", "b", "c"]
    [1, "b"].sort() // error
    [[1, 2, 3]].sort() // error

### SortBy

**Introduced in version 2 (cost support in version 3)**

Sorts a list by a key value, i.e., the order is determined by the result of
an expression applied to each element of the list.

    <list(T)>.sortBy(<bindingName>, <keyExpr>) -> <list(T)>
    keyExpr returns a value in {int, uint, double, bool, duration, timestamp, string, bytes}

Examples:

	[
	  Player { name: "foo", score: 0 },
	  Player { name: "bar", score: -10 },
	  Player { name: "baz", score: 1000 },
	].sortBy(e, e.score).map(e, e.name)
	== ["bar", "foo", "baz"]

### Last

**Introduced in the OptionalTypes library version 2**

Returns an optional with the last value from the list or `optional.None` if the
list is empty.

    <list(T)>.last() -> <Optional(T)>

Examples:

    [1, 2, 3].last().value() == 3
    [].last().orValue('test') == 'test'

This is syntactic sugar for list[list.size()-1].

### First

**Introduced in the OptionalTypes library version 2**

Returns an optional with the first value from the list or `optional.None` if the
list is empty.

    <list(T)>.first() -> <Optional(T)>

Examples:

     [1, 2, 3].first().value() == 1
     [].first().orValue('test') == 'test'

## Sets

Sets provides set relationship tests.

There is no set type within CEL, and while one may be introduced in the
future, there are cases where a `list` type is known to behave like a set.
For such cases, this library provides some basic functionality for
determining set containment, equivalence, and intersection.

### Sets.Contains

Returns whether the first list argument contains all elements in the second
list argument. The list may contain elements of any type and standard CEL
equality is used to determine whether a value exists in both lists. If the
second list is empty, the result will always return true.

    sets.contains(list(T), list(T)) -> bool

Examples:

    sets.contains([], []) // true
    sets.contains([], [1]) // false
    sets.contains([1, 2, 3, 4], [2, 3]) // true
    sets.contains([1, 2.0, 3u], [1.0, 2u, 3]) // true

### Sets.Equivalent

Returns whether the first and second list are set equivalent. Lists are set
equivalent if for every item in the first list, there is an element in the
second which is equal. The lists may not be of the same size as they do not
guarantee the elements within them are unique, so size does not factor into
the computation.

    sets.equivalent(list(T), list(T)) -> bool

Examples:

    sets.equivalent([], []) // true
    sets.equivalent([1], [1, 1]) // true
    sets.equivalent([1], [1u, 1.0]) // true
    sets.equivalent([1, 2, 3], [3u, 2.0, 1]) // true

### Sets.Intersects

Returns whether the first list has at least one element whose value is equal
to an element in the second list. If either list is empty, the result will
be false.

    sets.intersects(list(T), list(T)) -> bool

Examples:

    sets.intersects([1], []) // false
    sets.intersects([1], [1, 2]) // true
    sets.intersects([[1], [2, 3]], [[1, 2], [2, 3.0]]) // true

## Strings

Extended functions for string manipulation. As a general note, all indices are
zero-based.

### CharAt

Returns the character at the given position. If the position is negative, or
greater than the length of the string, the function will produce an error:

    <string>.charAt(<int>) -> <string>

Examples:

    'hello'.charAt(4)  // return 'o'
    'hello'.charAt(5)  // return ''
    'hello'.charAt(-1) // error

### IndexOf

Returns the integer index of the first occurrence of the search string. If the
search string is not found the function returns -1.

The function also accepts an optional position from which to begin the
substring search. If the substring is the empty string, the index where the
search starts is returned (zero or custom).

    <string>.indexOf(<string>) -> <int>
    <string>.indexOf(<string>, <int>) -> <int>

Examples:

    'hello mellow'.indexOf('')         // returns 0
    'hello mellow'.indexOf('ello')     // returns 1
    'hello mellow'.indexOf('jello')    // returns -1
    'hello mellow'.indexOf('', 2)      // returns 2
    'hello mellow'.indexOf('ello', 2)  // returns 7
    'hello mellow'.indexOf('ello', 20) // returns -1
    'hello mellow'.indexOf('ello', -1) // error

### Join

Returns a new string where the elements of string list are concatenated.

The function also accepts an optional separator which is placed between
elements in the resulting string.

    <list<string>>.join() -> <string>
    <list<string>>.join(<string>) -> <string>

Examples:

    ['hello', 'mellow'].join() // returns 'hellomellow'
    ['hello', 'mellow'].join(' ') // returns 'hello mellow'
    [].join() // returns ''
    [].join('/') // returns ''

### LastIndexOf

Returns the integer index of the last occurrence of the search string. If the
search string is not found the function returns -1.

The function also accepts an optional position which represents the last index
to be considered as the beginning of the substring match. If the substring is
the empty string, the index where the search starts is returned (string length
or custom).

    <string>.lastIndexOf(<string>) -> <int>
    <string>.lastIndexOf(<string>, <int>) -> <int>

Examples:

    'hello mellow'.lastIndexOf('')         // returns 12
    'hello mellow'.lastIndexOf('ello')     // returns 7
    'hello mellow'.lastIndexOf('jello')    // returns -1
    'hello mellow'.lastIndexOf('ello', 6)  // returns 1
    'hello mellow'.lastIndexOf('ello', 20) // returns -1
    'hello mellow'.lastIndexOf('ello', -1) // error

### LowerAscii

Returns a new string where all ASCII characters are lower-cased.

This function does not perform Unicode case-mapping for characters outside the
ASCII range.

     <string>.lowerAscii() -> <string>

Examples:

     'TacoCat'.lowerAscii()      // returns 'tacocat'
     'TacoCÆt Xii'.lowerAscii()  // returns 'tacocÆt xii'

### Quote

**Introduced in version 1**

Takes the given string and makes it safe to print (without any formatting due to escape sequences).
If any invalid UTF-8 characters are encountered, they are replaced with \uFFFD.

    strings.quote(<string>)

Examples:

    strings.quote('single-quote with "double quote"') // returns '"single-quote with \"double quote\""'
    strings.quote("two escape sequences \a\n") // returns '"two escape sequences \\a\\n"'

### Replace

Returns a new string based on the target, which replaces the occurrences of a
search string with a replacement string if present. The function accepts an
optional limit on the number of substring replacements to be made.

When the replacement limit is 0, the result is the original string. When the
limit is a negative number, the function behaves the same as replace all.

    <string>.replace(<string>, <string>) -> <string>
    <string>.replace(<string>, <string>, <int>) -> <string>

Examples:

    'hello hello'.replace('he', 'we')     // returns 'wello wello'
    'hello hello'.replace('he', 'we', -1) // returns 'wello wello'
    'hello hello'.replace('he', 'we', 1)  // returns 'wello hello'
    'hello hello'.replace('he', 'we', 0)  // returns 'hello hello'

### Split

Returns a list of strings split from the input by the given separator. The
function accepts an optional argument specifying a limit on the number of
substrings produced by the split.

When the split limit is 0, the result is an empty list. When the limit is 1,
the result is the target string to split. When the limit is a negative
number, the function behaves the same as split all.

    <string>.split(<string>) -> <list<string>>
    <string>.split(<string>, <int>) -> <list<string>>

Examples:

    'hello hello hello'.split(' ')     // returns ['hello', 'hello', 'hello']
    'hello hello hello'.split(' ', 0)  // returns []
    'hello hello hello'.split(' ', 1)  // returns ['hello hello hello']
    'hello hello hello'.split(' ', 2)  // returns ['hello', 'hello hello']
    'hello hello hello'.split(' ', -1) // returns ['hello', 'hello', 'hello']

### Substring

Returns the substring given a numeric range corresponding to character
positions. Optionally may omit the trailing range for a substring from a given
character position until the end of a string.

Character offsets are 0-based with an inclusive start range and exclusive end
range. It is an error to specify an end range that is lower than the start
range, or for either the start or end index to be negative or exceed the string
length.

    <string>.substring(<int>) -> <string>
    <string>.substring(<int>, <int>) -> <string>

Examples:

    'tacocat'.substring(4)    // returns 'cat'
    'tacocat'.substring(0, 4) // returns 'taco'
    'tacocat'.substring(-1)   // error
    'tacocat'.substring(2, 1) // error

### Trim

Returns a new string which removes the leading and trailing whitespace in the
target string. The trim function uses the Unicode definition of whitespace
which does not include the zero-width spaces. See:
https://en.wikipedia.org/wiki/Whitespace_character#Unicode

    <string>.trim() -> <string>

Examples:

    '  \ttrim\n    '.trim() // returns 'trim'

### UpperAscii

Returns a new string where all ASCII characters are upper-cased.

This function does not perform Unicode case-mapping for characters outside the
ASCII range.

    <string>.upperAscii() -> <string>

Examples:

     'TacoCat'.upperAscii()      // returns 'TACOCAT'
     'TacoCÆt Xii'.upperAscii()  // returns 'TACOCÆT XII'

### Reverse

Returns a new string whose characters are the same as the target string, only formatted in
reverse order.
This function relies on converting strings to rune arrays in order to reverse.
It can be located in Version 3 of strings.

    <string>.reverse() -> <string>

Examples:

    'gums'.reverse() // returns 'smug'
    'John Smith'.reverse() // returns 'htimS nhoJ'

## TwoVarComprehensions

TwoVarComprehensions introduces support for two-variable comprehensions.

The two-variable form of comprehensions looks similar to the one-variable
counterparts. Where possible, the same macro names were used and additional
macro signatures added. The notable distinction for two-variable comprehensions
is the introduction of `transformList`, `transformMap`, and `transformMapEntry`
support for list and map types rather than the more traditional `map` and
`filter` macros.

### All

Comprehension which tests whether all elements in the list or map satisfy a
given predicate. The `all` macro evaluates in a manner consistent with logical
AND and will short-circuit when encountering a `false` value.

    <list>.all(indexVar, valueVar, <predicate>) -> bool
    <map>.all(keyVar, valueVar, <predicate>) -> bool

Examples:

    [1, 2, 3].all(i, j, i < j) // returns true
    {'hello': 'world', 'taco': 'taco'}.all(k, v, k != v) // returns false

    // Combines two-variable comprehension with single variable
    {'h': ['hello', 'hi'], 'j': ['joke', 'jog']}
      .all(k, vals, vals.all(v, v.startsWith(k))) // returns true

### Exists

Comprehension which tests whether any element in a list or map exists which
satisfies a given predicate. The `exists` macro evaluates in a manner consistent
with logical OR and will short-circuit when encountering a `true` value.

    <list>.exists(indexVar, valueVar, <predicate>) -> bool
    <map>.exists(keyVar, valueVar, <predicate>) -> bool

Examples:

    {'greeting': 'hello', 'farewell': 'goodbye'}
      .exists(k, v, k.startsWith('good') || v.endsWith('bye')) // returns true
    [1, 2, 4, 8, 16].exists(i, v, v == 1024 && i == 10) // returns false

### ExistsOne

Comprehension which tests whether exactly one element in a list or map exists
which satisfies a given predicate expression. This comprehension does not
short-circuit in keeping with the one-variable exists one macro semantics.

    <list>.existsOne(indexVar, valueVar, <predicate>)
    <map>.existsOne(keyVar, valueVar, <predicate>)

This macro may also be used with the `exists_one` function name, for
compatibility with the one-variable macro of the same name.

Examples:

    [1, 2, 1, 3, 1, 4].existsOne(i, v, i == 1 || v == 1) // returns false
    [1, 1, 2, 2, 3, 3].existsOne(i, v, i == 2 && v == 2) // returns true
    {'i': 0, 'j': 1, 'k': 2}.existsOne(i, v, i == 'l' || v == 1) // returns true

### TransformList

Comprehension which converts a map or a list into a list value. The output
expression of the comprehension determines the contents of the output list.
Elements in the list may optionally be filtered according to a predicate
expression, where elements that satisfy the predicate are transformed.

    <list>.transformList(indexVar, valueVar, <transform>)
    <list>.transformList(indexVar, valueVar, <filter>, <transform>)
    <map>.transformList(keyVar, valueVar, <transform>)
    <map>.transformList(keyVar, valueVar, <filter>, <transform>)

Examples:

    [1, 2, 3].transformList(indexVar, valueVar,
      (indexVar * valueVar) + valueVar) // returns [1, 4, 9]
    [1, 2, 3].transformList(indexVar, valueVar, indexVar % 2 == 0
      (indexVar * valueVar) + valueVar) // returns [1, 9]
    {'greeting': 'hello', 'farewell': 'goodbye'}
      .transformList(k, _, k) // returns ['greeting', 'farewell']
    {'greeting': 'hello', 'farewell': 'goodbye'}
      .transformList(_, v, v) // returns ['hello', 'goodbye']

### TransformMap

Comprehension which converts a map or a list into a map value. The output
expression of the comprehension determines the value of the output map entry;
however, the key remains fixed. Elements in the map may optionally be filtered
according to a predicate expression, where elements that satisfy the predicate
are transformed.

    <list>.transformMap(indexVar, valueVar, <transform>)
    <list>.transformMap(indexVar, valueVar, <filter>, <transform>)
    <map>.transformMap(keyVar, valueVar, <transform>)
    <map>.transformMap(keyVar, valueVar, <filter>, <transform>)

Examples:

    [1, 2, 3].transformMap(indexVar, valueVar,
      (indexVar * valueVar) + valueVar) // returns {0: 1, 1: 4, 2: 9}
    [1, 2, 3].transformMap(indexVar, valueVar, indexVar % 2 == 0
      (indexVar * valueVar) + valueVar) // returns {0: 1, 2: 9}
    {'greeting': 'hello'}.transformMap(k, v, v + '!') // returns {'greeting': 'hello!'}

### TransformMapEntry

Comprehension which converts a map or a list into a map value; however, this
transform expects the entry expression be a map literal. If the transform
produces an entry which duplicates a key in the target map, the comprehension
will error. Note, that key equality is determined using CEL equality which
asserts that numeric values which are equal, even if they don't have the same
type will cause a key collision.

Elements in the map may optionally be filtered according to a predicate
expression, where elements that satisfy the predicate are transformed.

    <list>.transformMap(indexVar, valueVar, <transform>)
    <list>.transformMap(indexVar, valueVar, <filter>, <transform>)
    <map>.transformMap(keyVar, valueVar, <transform>)
    <map>.transformMap(keyVar, valueVar, <filter>, <transform>)

Examples:

    // returns {'hello': 'greeting'}
    {'greeting': 'hello'}.transformMapEntry(keyVar, valueVar, {valueVar: keyVar})
    // reverse lookup, require all values in list be unique
    [1, 2, 3].transformMapEntry(indexVar, valueVar, {valueVar: indexVar})

    {'greeting': 'aloha', 'farewell': 'aloha'}
      .transformMapEntry(keyVar, valueVar, {valueVar: keyVar}) // error, duplicate key